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The exposure of a material to an impulsive ion beam (liB) leads to rapid heating of the 
surface layer. This heating in turn creates widely propagated temperature gradients and asso- 
ciated elastic strains. The authors of [i] were the first to study the brittle fracture of 
solids under the influence of a powerful ion beam and hypothesized that the most likely 
mechanism by which the beam acted on the material was thermal shock. The authors of [2] cal- 
culated the space--time distribution of the mechanical stresses created in metals acted upon 
by pulsed laser radiation. To adequately interpret experiments conducted to study the effects 
created in an liB--material system, it is necessary to take into account the features of the 
ion beams. Allowance should be made for the fairly high level of complexity and uniqueness 
of the energy spectrum of beams generated by different methods. 

Here we propose to use the group method to solve the given class of problems. This ap- 
proach makes it possible to numerically model the formation and propagation of a thermoelas- 
tic wave in a plane barrier due to the action of an liB and to analyze the effect of the spec- 
tral characteristics on the occurrence of the process which is initiated. 

It is assumed that the energy contribution of the ion flow ensures heating of the par- 
ticle thermalization region in the barrier to a temperature not in excess of the melting 
point. An appreciable temperature gradient is created on the boundary of this region, while 
inside the region the thermal component of the pressure is of the same order as the cold pres- 
sure [3]. The relatively small magnitude of the mechanical perturbation of the absorbent as 
a result of the heating makes it possible to limit ourselves to the dynamic problem of thermo- 
elasticity when we attempt to describe the motion of the medium: 
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The value x = 0 corresponds to the irradiated surface. The temperature dependence of c, X, 
and a was tabulated in accordance with the data in [4]. Values between the nodes of the 
table were determined by linear interpolation. 

The above formulation of the problem is valid for irradiated materials with a linear 
dependence of stress on strain. For example, the ultimate strength is close to the yield 
strength for hard silumin (AI--Si), the hard alloy AI--Mg (1.5-2.5%)--Mn (1.2%), duralumin after 
quenching, aging, and cold-working, tungsten, and beryllium. These materials fracture immedi- 
ately after elastic deformation or after very little plastic deformation, with the amount of 
the latter not exceeding the amount of the former in any case [5]. 

The time of heating in the particle thermalization region is equal to the duration of 
the radiation pulse and should not be greater than the characteristic time of mechanical un- 
loading T u ~ R/CI, where R is the thickness of the heated layer. Otherwise, thermal stresses 
fail to develop when stress relaxation takes place as rapidly or more rapidly than the rise 
in the temperature of the surface layer [6]. 

The temperature dependence of sonic velocity is determined by the corresponding relations 
for the density, YoungVs modulus, and shear modulus of the given material. For example, for 
tungsten [7], a change in temperature from 280 to 1275~ leads to a reduction in CZ from 
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5.198"i0 s to 5.02"103 m/sec (the relative change is 3.8%). In the absence of structural 
changes in the investigated temperature range, mean values of C l for metals and alloys can 
be used with sufficient accuracy. 

The initial conditions for system (i), (2) are written in the form 

T (x, 0)---- To, U (x, 0 ) - -  OU (x, O) _ O, (3) 
Ot 

where To is the initial temperature of the plate. 

The boundary conditions for the heat-conduction equation describe the removal of heat 
from the surface by radiation in vacuum: 
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A good approximation of a perfectly flexible boundary is the boundary with a vacuum [8]. 
The total reflection of the elastic wave from the specimen boundary which corresponds to this 
approximation is described by the equations 
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Using a finite-difference approximation of the partial derivative of the function Oj (x) 
with respect to x and introducing the notation b = (Ax) -x, we write a multigroup system of 
ion transport equations on a uniform coordinate grid in a "straight-forward" approximation: 
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are the macroscopic cross section of the inelastic interaction of the ion beam with an atom 
(ion) of the absorbent, with the transition from the ~-th to the j-th energy group, and the 
macroscopic cross section for removal from the j-th group, respectively, and 

~D~ = s (D ~ (E) dE 
ej-1 

is the flux of particles of the j-th energy group. 

System (6) can be conveniently written in matrix form: 

~h~h ~ Bh-J, 
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Fig. i. Power density. W, W/m3; x, ~m. 

are N-dimensional vectors; 7k is a square matrix of the N-th order. The elements of Z k are 
determined by the expressions: 

,,h 
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The value of b = (~x)-* is taken equal to the maximum of the macroscopic removal cross sec- 
tions ?ktot n,n = I, 2, ..., N, k = 2, 3, ..., K. The values of Oj k for each k = 2, 3, ..., 
K are determined from known @jk-* from solution of algebraic system (8) by the Gauss method. 
The superscript k = 1 corresponds to the left (irradiated) boundary of the plate. In the 
calculations, the energy range (0-8.5) MeV was broken down into 20 equal intervals. The 
spectrum of the protons in the beam (@j') corresponded to the results in [i]. The function 
W(x, t) was determined by the relation: 
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j=l { 
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The duration of the radiation pulse was assumed to be equal to ~p = 40 nsec and did not ex- 
ceed the characteristic stress relaxation time T u = 50 nsec. 

Figure I shows the dependence of the power released on the coordinate (in a beryllium 
plate) calculated for the case of a proton beam obtained by the method of collective acceler- 
ation. 

We used implicit systems of second-order finite-difference equations to numerically solve 
Eqs. (i), (2) with corresponding initial and boundary conditions (3), (4). The choice of in- 

tegration interval with respect to the time At and the coordinate Ax can be arbitrary, since 
the systems are "unconditionally stable" [9]. Figure 2 shows the family of curves reflecting 
the space-time evolution of the mechanical stress field in a plate irradiated by an liB. 

It can be seen from Fig. I that the power density correlated well with features of the 
proton spectrum if we analyze the results in a one-frequency approximation. The density of 
beam current, j z Ii A/cm 2 [i], makes it possible to study the process of interaction with 
a material without allowance for collective effects. In principle, the group method is more 
flexible in regard to the need to consider the mutual effect of particles during deceleration 
than any other method, thus making it possible to investigate the given range of problems. 

The dependences of the mechanical stresses (Fig. 2) on time and the coordinate reflect 
the fact that by the end Of the pulse, the maximum compressive stresses have developed in the 
thermalization region of ions which are most representative in the beam spectrum. A rare- 
faction wave is formed at the irradiated surface and moves at the velocity C Z toward the 
right boundary. Its amplitude increases nonlinearly up to the moment corresponding to the 
moment of the current pulse. Given the above parameters of the proton beam, neither the 
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Fig. 2. Mechanical stress field in the 
plate: I) t = i0 nsec; 2) 25 nsec; 3) 40 
nsec; P, N/m2; x, ~m. 

compressive nor the tensile stresses exceed the static ultimate strength of beryllium o u = 
4.8"i0 s N/m 2 [4]. 

The method developed here makes it possible to calculate the mechanical stresses in brit- 
tle materials for realistic ion-beam parameters. It can be used to study shock-wave pro- 
cesses initiated by the action of powerful ion beams on high-melting materials with a high 
ultimate strength. The main advantage of the proposed method is its universality in regard 
to the type of particle beam used. 

NOTATION 

T, temperature; W(x, t), energy released per unit time per unit mass of material of the 
barrier; U, strain; p, c, %, density, heat capacity, and thermal conductivity of the material~ 
respectively; Cl, longitudinal sonic velocity; ~, ~, coefficient of linear expansion and 
Poisson's ratio; l, thickness of plate; Tp, duration of radiation pulse; c, o~ emissivity 
and Stefan--Boltzmann constant; @, ion flux; E, energy of ion; E, macroscopic cross section; 
~(t), time function; Q(j + m), mean value of energy lost by ion in the transition from group 
j to group m; Qj, energy released per unit segment during the passage of group-j ions; x, 
space coordinate; t, time. Indices: p, impulse; k, number of node of three-dimensional in- 
tegration network; j, ~, m, n, number of a specific energy group; N, total number of energy 
groups; K, number of nodes of network; tot, total. 
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